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ABSTRACT 
This study investigates the applicability of adaptive neuro-fuzzy inference system (ANFIS) and artificial neural 

network (ANN) approaches for modeling the fatty acid methyl esters (FAMEs) property including kinematic 

viscosity at various temperatures and the volume fractions of biodiesel. An experimental database of kinematic 

viscosity of pure biodiesel was used for developing of models, where the input variables in the network were the 

temperature, the number of carbon atoms (NC) and the number of hydrogen atoms (NH) of the composition of 

methyl esters (C8:0, C10:0, C12:0, C14:0, C16:0, C16:1, C18:0, C18:1, C18:2, C18:3, C20:0, C20:1, C22:0, 

C22:1, C24:0 were considered as input variables on the ANFIS and ANN.  Moreover, the models are divided 

into saturated species from C8:0 to C24:0 and unsaturated species, from C16:1 to C22:1. The model results were 

compared with experimental ones for determining the accuracy of the ANFIS and ANN predictions. The 

developed model produced idealized results and was found to be useful for predicting the kinematic viscosity of 

biodiesel blends with a limited number of available data. Moreover, the results suggest that the ANFIS approach 

can be used successfully for predicting the kinematic viscosity of biodiesel blends at various volume fractions 

and temperature compared to ANN approach. 

 

KEYWORDS: Biodiesel blends; composition of methyl esters; kinematic viscosity; number of carbon atoms; 

number of hydrogen atoms 

I. INTRODUCTION 
Reducing sources of fossil fuels and their pollution has been the aim of extensive research performed on 

alternative energy sources, particularly renewable fuels. Biodiesel is an alternative renewable fuel for diesel 

fuel, which includes alkyl esters of fatty acids obtained from vegetable oils or animal fats by transesterification 

reaction. [1-3] 

Biodiesel has many advantages, which have caused the consideration of this fuel in recent years. It is 

biodegradable, nontoxic, and renewable. In addition, biodiesel has a higher cetane number and a flash point than 

diesel oil and effectively reduces the release of hydrocarbons and carbon monoxide and suspends particles from 

combustion. Biodiesel dissolves in diesel oil completely so it can be combined in any percent. Differences 

between biodiesel and diesel fuels exist (higher density and viscosity, higher cloud point and pour point (in 

some cases), and lower heat of combustion), but biodiesel can be used pure or mixed with diesel, without 

modification in diesel equipment directly. [4-6] 

Kinematic viscosity is considered the key of fuel properties according to diesel and biodiesel fuel standards. 

Biodiesel viscosity is usually higher than that of diesel, which results in longer liquid penetration and worse 

atomization [7-9] compared with diesel fuel. The viscosity of biodiesel from different feedstocks varies with the 

FAME composition and the viscosity of FAME increases with the chain length and the degree of saturation 

[10]. Various feedstocks have been transesterificated to investigate their feasibility as the biodiesel sources 

recently [11-17]. 

Experimental methods are often used in the determination of fuel properties [11, 18-22] which provide good and 

high degree of accuracy results. This experimental determination of biodiesel fuel properties has to be 

conducted in accordance with standard test methods which have been provided for in the different standards 

world over. The cost of running these tests is high, and is technically challenging, energy and time consuming. 

In a case in which these three issues are considered to be a minor issue, the availability of a well equipped 
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laboratory to perform these tests is scarce. Subject to the above, mathematical models [23, 24], statistical models 

[25-30], neuro fuzzy [31-33] and artificial neural network [34-39] have been used in predicting the properties of 

biodiesel including viscosity, density or cold flow properties. 

This present study evaluated the efficiency of ANFIS and ANN in accurately predicting the kinematic viscosity 

of saturated and unsaturated biodiesel for wide ranges of temperature and hydrocarbon chain length. The details 

of the calculation method, numerical validation, and comparative statistical analysis are fully described in this 

work. The ANFIS and ANN to be developed in this paper address a more extensive database that published in 

other works. 

 

II. METHODOLOGY 
The adaptive neuro-fuzzy inference system (ANFIS) and Artificial neural networks (ANN) have been used 

extensively in biodiesel properties modeling, due to their ability to model nonlinear systems efficiently. The 

theoretical background of Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference System 

(ANFIS) are given in [40-43]. The main steps that were followed in this work to develop predictive models of 

kinematic viscosity of biodiesel and fatty acid methyl esters (Biodiesel) are presented. Kinematic viscosity data 

of different biodiesel samples at different temperatures were gathered from the literature [44-49]. The 

experimental data was obtained from scientific publication (Table 1) to estimate the kinematic viscosity of 

biodiesel.  

Table 1. Kinematic Viscosity in mm2/s of FAMEs Data 
   T[K] C6:0 C8:0 C10:0 C12:0 C14:0 C14.1 C16:0 C16.1 C18:0 C18.1 C18.2 C18.3 C20:0 C22:0 

263.15     5.5     9.92   14.77   21.33 14.1 10.19     

      5.4     8.37   12.19   17.22 11.8 8.87     

      4.04     7.01   10.15   14.03 9.84 7.33     
268.15     4.68     6.13   12.19   11.66 8.47 6.59     

273.15 2.31   4.04   7           8.322 6.965     

278.15     3.378 5.45             8.46 6.9658     
      3.49               8.3219 6.966     

      3.378     5.35   7.33   9.869 7.3 5.53     

283.15 1.179 1.967 3.01 4.654             7.236 6     
    1.913 3.014 4.635             7.2365 6.176     

    1.931 3.014 4.79               6.1773     

        4.364               6.1774     
288.15 1.084 1.772 2.689 4.093   4.73   5.341   8.51 6.43 5.524     

    1.769 2.708 4.094       6.38   8.49 6.355 5.14     

      2.71 4.07             6.43 5.5241     
293.15 1.01 1.61 2.421 3.627 5.201 4.13   4.723   7.33 5.61 4.57     

  1.012 1.59 2.437 3.54       5.56   7.379 5.622 4.972     

  1.011 1.628 2.449 3.641           7.23 5.58 4.84     
    1.627 2.49 3.63           7.38 5.61 4.9722     

      2.45 3.64             5.6194       

      2.448     3.71   4.94   6.44 5.03 4.07     
298.15 0.9412 1.471 2.196 3.225 4.611     4.214   6.472 5.017 4.501     

    1.504 2.227 3.261 4.6105         6.47   4.5011     

      2.23 3.29   3.37   3.806   5.72         
        3.2614       4.42   5.724 4.53 3.88     

303.15 0.8822 1.368 2.004 3.892 4.12           4.508 4.099     

    1.396 2.037 2.942 4.1643           4.5079 4.0989     
    1.39 2.05 2.95               4.0973     

      2.036 2.942   3.04   3.96   5.08 4.08 3.32     

        2.942       3.432   5.099 4.075 3.75     
308.15 0.83 1.262 1.832 2.618 3.698   4.929         4.0504     

    1.3 1.871 2.668 3.697             3.7504     

    1.3001 1.87 2.69   2.73   3.064   4.51 3.65 3.09     
      1.871 2.668       3.67   4.573 3.703 3.298     

310.95 0.81 1.207 1.765 2.487 3.456   4.688   5.881 4.45 3.64 3.27     

313.15 0.785 1.17 1.686 2.384 3.338   4.32   5.61 4.721 3.702 3.14 7.4 6.955 
  0.785 1.16 1.69 2.433 3.3   4.414   5.867     3.2898     

    1.215 1.726 2.431 2.73   4.38 2.85 5.58 4.125 3.383 3.028     
    1.19 1.71 2.41 3.3381   4.4136   5.867 4.123 3.103 3.0284     

313.15       2.43 3.0303           3.102       

        2.433 3.23           3.3826       
  0.7422 1.099 1.566 2.139 3.0303   2.977 2.57 5.241 3.742 3.103 2.811     

    1.138 1.589 2.229     2.9766 2.229 5.2451 3.121 2.644 2.434     

    1.138   2.228               2.263     
318.15 0.7014 1.028 1.452 2.014 2.764   3.602   4.706       5.736   

    1.069 1.485 2.05 2.763       4.705     2.4343 5.737   
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    1.06 1.184         1.918       2.1     

Table 1. Continued 
   T[K] C6:0 C8:0 C10:0 C12:0 C14:0 C14.1 C16:0 C16:1 C18:0 C18.1 C18.2 C18.3 C20:0 C22:0 

328.15 0.6668 0.966 1.353 1.859 2.533   3.28 2.06 4.254 2.871 2.453 2.09 5.154   
    1.006 1.384 1.893 2.5327     1.918 3.666 2.651 2.2832 2.1002 5.153   

      1.383           4.2537 2.6 2.25 2.0903     

  0.632   1.263 1.724 2.323   2.998   3.861 2.457 2.132 1.96 4.23 5.692 
333.15 0.6332   1.276 1.732 2.33   3.001 1.792 3.666   2.1507 1.9621 4.657 5.691 

      1.294 1.724 2.329       3.8611     1.9598     

      1.291 1.755       1.658     1.966 1.845     

                    2.6   1.8455     
                1.573       1.742     

 

The development of the proposed approaches was performed as follows. In the first step, the experimental 

measurement data were separated into input data (independent variables, temperature, NC and NH of the 

composition of methyl esters (saturated, C8:0, C10:0, C12:0, C14:0, C16:0, C18:0, C20:0, C22:0, C24:0, and 

unsaturated, C16:1, C18:1, C18:2, C18:3, C20:1, C22:1,), and output data (dependent variable in term of 

kinematic viscosity)). Subsequently, different approaches (ANFIS and ANN) were proposed to describe the 

behavior of the kinematic viscosity, as a function of temperature and volume fraction of biodiesel. In this case, 

the database was randomly divided into three groups with 60% to training, 20% to testing and 20% to checking 

or validation. Since the input variables on the artificial neural network have different magnitude, a normalization 

of them is required. We use a range between 0.1 and 0.9 according with the proposal of Khataee and Kasiri 

[50,51], as follows: 

𝜃𝑛 = 0.8 (
𝜃 − 𝑚𝑖𝑛(𝜃)

𝑚𝑎𝑥(𝜃) − 𝑚𝑖𝑛(𝜃)
) + 0.1                                                                                                                                 (1) 

where θn is the normalized input variable, the minimum (min) and maximum (max) values are the shown in 

Table 2. 

Table 2.  Limit values for the input and output variables on ANFIS and ANN models 

Input 

Limit Unit 

Minimum Maximum 

Temperature 263.15 333.15 K 

Number of Carbon  7.00 23.00 - 

Number of Hydrogen 14.00 46.00 - 

Output    

Viscosity 0.46 21.33 mm/s2 

 

In general, the calculation methodology used in this work had three stages:  

1. Collect experimental data from the literature to make a robust database;  

2. Develop ANFIS/ANN models able to predict the kinematic viscosity of biodiesel 

3. Implement a comparative study between the simulated and experimental properties.  

Furthermore, a sensitivity analysis was applied to find the variables of greater influence on the response variable 

(Figure 1). The Matlab2015 software was used for the application of the adaptive neuro-fuzzy inference system 

(ANFIS) and artificial neural network (ANN) approaches. 

 

Appraisal of the Developed Models 

The developed ANFIS and ANN models were evaluated comprehensively for predicting the biodiesel properties 

of biodiesel samples. The following statistical indicators were employed: correlation coefficients (R), coefficient 

of determination (R2), mean squared error (MSE), root mean squared error (RMSE) and absolute average 

deviation (AAD). 

𝑅 =
∑ (𝑎𝑝,𝑖−𝑎𝑝,𝑎𝑣𝑒)𝑛

𝑖 .(𝑎𝑒,𝑖−𝑎𝑝,𝑎𝑣𝑒)

√[∑ (𝑎𝑝,𝑖−𝑎𝑝,𝑎𝑣𝑒)
2𝑛

𝑖 ][∑ (𝑎𝑒,𝑖−𝑎𝑝,𝑎𝑣𝑒)
2𝑛

𝑖 ]

                                                                                                                                (2)                    

𝑅2 = 1 −
∑ (𝑎𝑒,𝑖−𝑎𝑝,𝑖)

2𝑛
𝑖=1

∑ (𝑎𝑝,𝑖−𝑎𝑒,𝑎𝑣𝑒)
2𝑛

𝑖=1

                                                                                                                                                      (3)                          

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑎𝑒,𝑖 − 𝑎𝑝,𝑖)

2𝑛
𝑖=1                                                                                                                                                  (4)                           

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑎𝑒,𝑖 − 𝑎𝑝,𝑖)

2𝑛
𝑖=1                                                                                                                                            (5)   
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𝐴𝐴𝐷 =
100

𝑛
∑ |

𝑎𝑐𝑎𝑙,𝑖 − 𝑎𝑒𝑥𝑝,𝑖

𝑎𝑒𝑥𝑝,𝑖

|  

𝑛

𝑖=1

                                                                                                                                         (6) 

where n is the number of experimental data, ap,i is the predicted values, ae,i is the experimental values, ae,ave is the 

average experimental values, ap,ave is the average predicted values and i is the number of input variables. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Algorithm used in this work for the development of the ANFIS and ANN models 

 

 

III. RESULTS AND DISCUSSION 
Adaptive Neuro–Fuzzy Inference System (ANFIS) Model for Saturated and Unsaturated FAMEs 

The model was trained with part of the database derived from the experimental results of previous studies. The 

database was first split into training data and testing data. The training data set was also split into two parts, a 

training set (60%) and a checking set (20%). The use of checking sets in ANFIS learning beside the training set 
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is a recommended technique to guarantee model generalization and to avoid over-fitting the model to the 

training data set. 

In this study, by trial and error, the best number of membership functions for each input was determined as 5, 

the membership grades takes the Triangular-shaped membership functions and the output part of each rule uses 

a linear defuzzifier formula. In this research, two methods, hybrid and back propagation tested for generation 

ANFIS that the results is presented in Table 3. The results show the training error in the hybrid method is lower 

of back-propagation method. Therefore, the hybrid method has used for simulations. The developed ANFIS 

model for predicting the kinematic viscosity at different temperature, NC and NH is shown in Figure 2. 

 

Table 3. The ANFIS information used in this study  

Epoch 

Saturated FAMEs Unsaturated FAMEs 

Hybrid 
Back-

propagation 
Hybrid 

Back-

propagation 

1000 1000 1000 1000 

Training error 0.0082 0.0088 0.0228 0.0237 

Tasting error 0.0243 0.0345 0.0229 0.0264 

Checking error 0.0218 0.0310 0.0540 0.0620 

Number of nodes 286 286 286 286 

Number of linear parameters 500 500 500 500 

Number of nonlinear parameters 45 45 45 45 

Number of fuzzy rules 125 125 125 125 

 

 

Figure 2.  Structure of ANFIS models  

The three-dimensional surface plots of kinematic viscosity of biodiesel against temperature and number of 

carbon atoms and number of hydrogen atom of biodiesel is depicted in Figure 3. The plot suggests strong 

interaction between the variables with significant influence on the viscosity of biodiesel. From the Figure, 

increasing in temperature leads to increase the viscosity of biodiesel. 
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Figure 3.  Surface viewer of ANFIS model for kinematic viscosity of saturated and unsaturated FAMEs 

 

Artificial Neural Network (ANN) Model for Saturated and Unsaturated FAMEs 

The development and the training of the network model in this study were carried out using the MATLAB 2015. 

In this study, the experimental data of biodiesel samples were randomly split into three data set, 60% in the 

training set, 20% in the validation set and 20% in the test set. Training of the network was performed by using 

the Levenberg–Marquardt, back-propagation algorithms. There is no general rule for the determination of the 

optimum number of hidden layers and usually it is determined through trial and error method [52].  Therefore, 

the number of neurons in the hidden layer was determined by trial and error test, where a mean squared error 

greater than 1 ×10-4 and a correlation coefficient higher than 0.95 was obtained.  In addition, with the trial and 

error method, training results showed that the ANN with two hidden layers has the best performance. 

Consequently, the developed ANN model for predicting kinematic viscosity biodiesel blends is shown in Figure 

4 and the training parameters can be found in Table 4. The developed network architecture has a 3-2-1 

configuration with seven neurons in the input layer. Two hidden layers with varying neurons and seven neurons 

in the output layer representing viscosity are used.  

 
Figure 4. Neural network architecture for three inputs and one output 
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Table 4. Neural network configuration for the training 

Parameter  
 

Specification  
 

Training Function  
 

Levenberg–Marquardt 

Performance function Mean square error (MSE) 

Activation function Tan-Sigmoid 

Number of layers 2 

Number of neurons 7 

Normalized range 0.1 to 0.9 

Figure 5 illustrates a linear relation for the training, validation, testing and performance of the network with high 

correlation coefficients (R) of kinematic viscosity. The straight lines in Figure 4.10 and 4.11 are the linear 

relationships obtained between the output (predicted) and the target (experimental) data of viscosity used in this 

study. The mean squared error (MSE) for saturated and Unsaturated Biodiesel network was 9.675×10-5 and 

6.018×10-4, respectively. The high coefficients of correlation (R) obtained during the training, validation and 

testing of the viscosity network display very good relationship between the output and the experimental values 

of viscosity. 

 
Figure 5. Regression plots for saturated and unsaturated FAMEs  

 

Performance evaluation of ANFIS and ANN 

The accuracy of the models obtained from ANFIS and ANN were examined by evaluating the values of both R2 

and AAD%. The results (Table 5) showed that the two optimization tools gave good predictions due to the 

values of R2 and small values of AAD. However, ANFIS showed a clear lead over ANN because of higher value 

of R2 and smaller value of AAD. ANFIS was better than ANN in the modeling and optimization studies for 

predicting the kinematic viscosity of saturated and unsaturated FAMEs. 

 
Table 5. R2 and ADD of ANFIS and ANN models 

System 

ANFIS models ANN models 

Temperature 

range [K] 
R2 ADD 

[%] 

Temperature 

range [K] 
R2 

ADD 

[%] 

Saturated FAMEs 263.15-373.15 0.988 0.74 263.15-373.15 0.952 1.74 

Unsaturated FAMEs 263.15-363.15 0.974 2.43 263.15-363.15 0.961 4.43 

 

IV. CONCLUSION AND FUTURE WORKS 
In this study, an ANFIS and ANN methods were developed to predict the kinematic viscosity of biodiesel at 

various temperatures with the experimental data collected from the literature. ANFIS and ANN methods 

http://www.ijesrt.com/


  ISSN: 2277-9655 

[Kassem* et al., 7(1): January, 2018]  Impact Factor: 5.164 

IC™ Value: 3.00  CODEN: IJESS7 

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology 

 [595] 

compared with the experimental data. The results showed that there is an excellent agreement between the 

experimental data and modeling data, with average errors very low. Comparison of the ANFIS and ANN 

predictions and the experimental results demonstrated that both models provide good quality predictions in 

terms of input variables. The results confirmed that the ANFIS model was more robust and accurate in 

predicting the values of kinematic viscosity of biodiesel blends compared to the ANN model. ANFIS model has 

performed more consistently than ANN and can be used as a very powerful and flexible tool for modeling the 

optimization process. 

In future, ANFIS model can also be developed for predicting the kinematic viscosity, density and cold flow 

properties of biodiesel blends at various volume fractions of biodiesel and temperature. 
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